Get Started
Vald is a highly scalable distributed fast approximate nearest neighbor dense vector search engine.
Vald is designed and implemented based on Cloud-Native architecture.
This tutorial shows how to deploy and run the Vald components on your Kubernetes cluster. And, Fashion-MNIST is used as an example of a dataset.
Overview
The below image shows the architecture image about the deployment result of Get Started
.
The 4 kinds of components, Vald LB Gateway
, Vald Discoverer
, Vald Agent
, and Vald Index Manager
will be deployed to the Kubernetes.
For more information about Vald’s architecture, please refer to Architecture.
The 5 steps to Get Started with Vald:
- Check and Satisfy the Requirements
- Prepare Kubernetes Cluster
- Deploy Vald on Kubernetes Cluster
- Run Example Code
- Cleanup
Requirements
- Kubernetes: v1.19 ~
- Go: v1.15 ~
- Helm: v3 ~
- libhdf5 (only required for get started)
Helm is used to deploying Vald on your Kubernetes and HDF5 is used to decode the sample data file to run the example.
If Helm or HDF5 is not installed, please install Helm and HDF5.
Installation command for Helm
curl -fsSL https://raw.githubusercontent.com/helm/helm/main/scripts/get-helm-3 | bash
Installation command for HDF5
# yum
yum install -y hdf5-devel
# apt
apt-get install libhdf5-serial-dev
# homebrew
brew install hdf5
Prepare the Kubernetes Cluster
This tutorial requires the Kubernetes cluster.
Vald runs on public Cloud Kubernetes Services such as GKE, EKS.
In the sense of trying to Get Started
, k3d or kind are easy Kubernetes tools to use.
This tutorial uses Kubernetes Ingress and Kubernetes Metrics Server for running Vald.
Please make sure these functions are available.
The configuration of Kubernetes Ingress is depended on your Kubernetes cluster’s provider. Please refer to on yourself.
In the following example, we create the Kubernetes cluster using k3d, that the internal port 80 (where the traefik ingress controller is listening on) is exposed on the host system.
k3d cluster create -p 8081:80@loadbalancer
The way to deploy Kubernetes Metrics Service is here:
kubectl apply -f https://github.com/kubernetes-sigs/metrics-server/releases/latest/download/components.yaml && \
kubectl wait -n kube-system --for=condition=ready pod -l k8s-app=metrics-server --timeout=600s
Deploy Vald on Kubernetes Cluster
This chapter shows how to deploy Vald using Helm and run it on your Kubernetes cluster.
In this tutorial, you will deploy the basic configuration of Vald that is consisted of vald-agent-ngt, vald-lb-gateway, vald-discoverer, and vald-manager-index.
Clone the repository
git clone https://github.com/vdaas/vald.git && \ cd vald
Confirm which cluster to deploy
kubectl cluster-info
Edit Configurations
Set the parameters for connecting to the vald-lb-gateway through Kubernetes ingress from the external network. Please set these parameters.
vim example/helm/values.yaml === ## vald-lb-gateway settings gateway: lb: ... ingress: enabled: true # TODO: Set your ingress host. host: localhost # TODO: Set annotations which you have to set for your Ingress resource. annotations: ...
Note:
If you decided to use port-forward instead of ingress, please setgateway.lb.ingress.enabled
tofalse
.Deploy Vald using Helm
Add vald repo into the helm repo.
helm repo add vald https://vald.vdaas.org/charts
Deploy vald on your Kubernetes cluster.
helm install vald vald/vald --values example/helm/values.yaml
Verify
When finish deploying Vald, you can check the Vald’s pods status following command.
kubectl get pods
Example output
If the deployment is successful, all Vald components should be running.NAME READY STATUS RESTARTS AGE vald-agent-ngt-0 1/1 Running 0 7m12s vald-agent-ngt-1 1/1 Running 0 7m12s vald-agent-ngt-2 1/1 Running 0 7m12s vald-agent-ngt-3 1/1 Running 0 7m12s vald-agent-ngt-4 1/1 Running 0 7m12s vald-discoverer-7f9f697dbb-q44qh 1/1 Running 0 7m11s vald-lb-gateway-6b7b9f6948-4z5md 1/1 Running 0 7m12s vald-lb-gateway-6b7b9f6948-68g94 1/1 Running 0 6m56s vald-lb-gateway-6b7b9f6948-cvspq 1/1 Running 0 6m56s vald-manager-index-74c7b5ddd6-jrnlw 1/1 Running 0 7m12s
kubectl get ingress
Example output
NAME CLASS HOSTS ADDRESS PORTS AGE vald-lb-gateway-ingress traefik localhost 192.168.16.2 80 7m43s
kubectl get svc
Example output
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE kubernetes ClusterIP 10.43.0.1 <none> 443/TCP 9m29s vald-agent-ngt ClusterIP None <none> 8081/TCP,3001/TCP 8m48s vald-discoverer ClusterIP None <none> 8081/TCP,3001/TCP 8m48s vald-manager-index ClusterIP None <none> 8081/TCP,3001/TCP 8m48s vald-lb-gateway ClusterIP None <none> 8081/TCP,3001/TCP 8m48s
Run Example Code
In this chapter, you will execute insert, search, and delete vectors to your Vald cluster using the example code.
The Fashion-MNIST is used as a dataset for indexing and search query.
The example code is implemented in Go and using vald-client-go, one of the official Vald client libraries, for requesting to Vald cluster.
Vald provides multiple language client libraries such as Go, Java, Node.js, Python, etc.
If you are interested, please refer to SDKs.
Port Forward(option)
If you do not use Kubernetes Ingress, port-forward is required to make requests from your local environment.
kubectl port-forward deployment/vald-lb-gateway 8081:8081
Download dataset
Download Fashion-MNIST that is used as a dataset for indexing and search query.
Move to the working directory
cd example/client
Download Fashion-MNIST testing dataset
wget http://ann-benchmarks.com/fashion-mnist-784-euclidean.hdf5
Run Example
We use
example/client/main.go
to run the example.
This example will insert and index 400 vectors into the Vald from the Fashion-MNIST dataset via gRPC. And then after waiting for indexing, it will request for searching the nearest vector 10 times. You will get the 10 nearest neighbor vectors for each search query.
Run example codes by executing the below command.go run main.go
The detailed explanation of example code is here
This will execute 6 steps.init
Import packages
example code
package main import ( "context" "encoding/json" "flag" "time" "github.com/kpango/fuid" "github.com/kpango/glg" "github.com/vdaas/vald-client-go/v1/payload" "github.com/vdaas/vald-client-go/v1/vald" "gonum.org/v1/hdf5" "google.golang.org/grpc" "google.golang.org/grpc/credentials/insecure" )
Set variables
The constant number of training datasets and test datasets.
example code
const ( insertCount = 400 testCount = 20 )
The variables for configuration.
example code
const ( datasetPath string grpcServerAddr string indexingWaitSeconds uint )
Recognition parameters.
example code
func init() { flag.StringVar(&datasetPath, "path", "fashion-mnist-784-euclidean.hdf5", "set dataset path") flag.StringVar(&grpcServerAddr, "addr", "127.0.0.1:8081", "set gRPC server address") flag.UintVar(&indexingWaitSeconds, "wait", 60, "set indexing wait seconds") flag.Parse() }
load
Loading from Fashion-MNIST dataset and set id for each vector that is loaded. This step will return the training dataset, test dataset, and ids list of ids when loading is completed with success.
example code
ids, train, test, err := load(datasetPath) if err != nil { glg.Fatal(err) }
Create the gRPC connection and Vald client with gRPC connection.
example code
ctx := context.Background() conn, err := grpc.NewClient(grpcServerAddr, grpc.WithTransportCredentials(insecure.NewCredentials())) if err != nil { glg.Fatal(err) } client := vald.NewValdClient(conn)
Insert and Index
Insert and Indexing 400 training datasets to the Vald agent.
example code
for i := range ids [:insertCount] { _, err := client.Insert(ctx, &payload.Insert_Request{ Vector: &payload.Object_Vector{ Id: ids[i], Vector: train[i], }, Config: &payload.Insert_Config{ SkipStrictExistCheck: true, }, }) if err != nil { glg.Fatal(err) } if i%10 == 0 { glg.Infof("Inserted %d", i) } }
Wait until indexing finish.
example code
wt := time.Duration(indexingWaitSeconds) * time.Second glg.Infof("Wait %s for indexing to finish", wt) time.Sleep(wt)
Search
Search 10 neighbor vectors for each 20 test datasets and return a list of the neighbor vectors.
When getting approximate vectors, the Vald client sends search config and vector to the server via gRPC.
example code
glg.Infof("Start search %d times", testCount) for i, vec := range test[:testCount] { res, err := client.Search(ctx, &payload.Search_Request){ Vector: vec, Config: &payload.Search_Config{ Num: 10, Radius: -1, Epsilon: 0.1, Timeout: 100000000, } } if err != nil { glg.Fatal(err) } b, _ := json.MarshalIndent(res.GetResults(), "", " ") glg.Infof("%d - Results : %s\n\n", i+1, string(b)) time.Sleep(1 * time.Second) }
Remove
Remove 200 indexed training datasets from the Vald agent.
example code
for i := range ids [:removeCount] { _, err := client.Remove(ctx, &payload.Remove_Request{ Id: &payload.Object_ID{ Id: ids[i], }, }) if err != nil { glg.Fatal(err) } if i%10 == 0 { glg.Infof("Removed %d", i) } }
Flush
Remove all remaining training datasets from the Vald agent.
example code
_, err := client.Flush(ctx, &payload.Flush_Request{}) if err != nil { glg.Fatal(err) }
Cleanup
In the last, you can remove the deployed Vald Cluster by executing the below command.
helm uninstall vald
Next Steps
Congratulation! You completely entered the Vald World!
If you want, you can try other tutorials such as:
For more information, we recommend you to check:
See also
Get Started With Faiss Agent
Running Vald cluster with faiss Agent on Kubernetes and execute client codes
Vald Agent Standalone on K8s
Running only Vald Agent on Kubernetes and execute client codes
Vald Agent Standalone on Docker
Running Vald Agent on Docker and execute client codes
Vald Multicluster on K8s
Running Multi Vald Clusters with Mirror Gateway on Kubernetes and execute client codes