Vald Agent Standalone on Kubernetes
This article will show you how to deploy a standalone Vald Agent using Helm and run it on your Kubernetes cluster.
Overview
Vald is made up of multiple microservices.
In Get Started, you may use 4 kinds of components to deploy Vald.
In this case, you use only 1 component, Vald Agent
that is the core component for Vald named vald-agent-ngt
, to deploy.
The below image shows the architecture image of this case.
The 5 steps to Vald Agent Standalone on Kubernetes with Vald:
- Check and Satisfy the Requirements
- Prepare Kubernetes Cluster
- Deploy Vald Agent Standalone on Kubernetes cluster
- Run Example Code
- Cleanup
Requirements
- Kubernetes: v1.19 ~
- Go: v1.15 ~
- Helm: v3 ~
- libhdf5 (only required for tutorial)
Helm is used to deploying Vald on your Kubernetes, and Hdf5 decodes the sample data.
If Helm or HDF5 is not installed, please install Helm and HDF5.
Installation command for Helm
curl -fsSL https://raw.githubusercontent.com/helm/helm/main/scripts/get-helm-3 | bash
Installation command for HDF5
# yum
yum install -y hdf5-devel
# apt
apt-get install libhdf5-serial-dev
# homebrew
brew install hdf5
Prepare the Kubernetes Cluster
Prepare Kubernetes cluster
To complete get started, the Kubernetes cluster is required.
Vald will run on Cloud Services such as GKE, AWS. In the sense of trying to “Get-Started”, k3d or kind are easy Kubernetes tools to use.
Deploy Vald Agent Standalone on Kubernetes Cluster
This chapter will show you how to deploy a standalone Vald Agent using Helm and run it on your Kubernetes cluster.
This chapter uses NGT as Vald Agent to perform vector insertion operation, indexing, and searching operation.
Clone the repository
To use the
deployment yaml
for deployment, let’s clonevdaas/vald
repository.git clone https://github.com/vdaas/vald.git && \ cd vald
Deploy Vald Agent Standalone using Helm
There is the values.yaml to deploy standalone Vald Agent. Each component can be disabled by setting the value
false
to the[component].enabled
field. This is useful for deploying standalone Vald Agent NGT pods.helm repo add vald https://vald.vdaas.org/charts && \ helm install vald-agent-ngt vald/vald --values example/helm/values-standalone-agent-ngt.yaml
Verify
kubectl get pods
Example output
If the deployment is successful, Vald Agent component should be running.NAME READY STATUS RESTARTS AGE vald-agent-ngt-0 1/1 Running 0 20m vald-agent-ngt-1 1/1 Running 0 20m vald-agent-ngt-2 1/1 Running 0 20m vald-agent-ngt-3 1/1 Running 0 20m
Run Example Code
Port Forward
At first, port-forward the vald-lb-gateway is required to make request from your local environment possible.
kubectl port-forward service/vald-agent-ngt 8081:8081
Download dataset
Download Fashion-MNIST that is used as a dataset for indexing and search query.
# move to the work directory cd example/client/agent
# download Fashion-MNIST testing dataset wget https://ann-benchmarks.com/fashion-mnist-784-euclidean.hdf5
Run Example
We use
example/client/agent/main.go
to run the example.
This example will insert and index 400 vectors into the Vald from the Fashion-MNIST dataset via gRPC. And then after waiting for indexing, it will request for searching the nearest vector 10 times. You will get the 10 nearest neighbor vectors for each search query.
Run example codes by executing the below command.# run example go run main.go
The detailed explanation of example code is here
This will execute 6 steps.init
Import packages
example code
package main import ( "context" "encoding/json" "flag" "time" "github.com/kpango/fuid" "github.com/kpango/glg" agent "github.com/vdaas/vald-client-go/v1/agent/core" "github.com/vdaas/vald-client-go/v1/payload" "github.com/vdaas/vald-client-go/v1/vald" "gonum.org/v1/hdf5" "google.golang.org/grpc" "google.golang.org/grpc/credentials/insecure" )
Set variables
The constant number of training datasets and test datasets.
example code
const ( insertCount = 400 testCount = 20 )
The variables for configuration.
example code
const ( datasetPath string grpcServerAddr string indexingWaitSeconds uint )
Recognition parameters.
example code
func init() { flag.StringVar(&datasetPath, "path", "fashion-mnist-784-euclidean.hdf5", "set dataset path") flag.StringVar(&grpcServerAddr, "addr", "127.0.0.1:8081", "set gRPC server address") flag.UintVar(&indexingWaitSeconds, "wait", 60, "set indexing wait seconds") flag.Parse() }
load
Loading from Fashion-MNIST dataset and set id for each vector that is loaded. This step will return the training dataset, test dataset, and ids list of ids when loading is completed with success.
example code
ids, train, test, err := load(datasetPath) if err != nil { glg.Fatal(err) }
Create the gRPC connection and Vald client with gRPC connection.
example code
ctx := context.Background() conn, err := grpc.NewClient(grpcServerAddr, grpc.WithTransportCredentials(insecure.NewCredentials())) if err != nil { glg.Fatal(err) } client := agent.NewAgentClient(conn)
Insert and Index
Insert and Indexing 400 training datasets to the Vald agent.
example code
for i := range ids [:insertCount] { if i%10 == 0 { glg.Infof("Inserted %d", i) } _, err := client.Insert(ctx, &payload.Insert_Request{ Vector: &payload.Object_Vector{ Id: ids[i], Vector: train[i], }, Config: &payload.Insert_Config{ SkipStrictExistCheck: true, }, }) if err != nil { glg.Fatal(err) } }
Wait until indexing finish.
example code
wt := time.Duration(indexingWaitSeconds) * time.Second glg.Infof("Wait %s for indexing to finish", wt) time.Sleep(wt)
[Optional] Indexing manually instead of waiting for auto indexing.
You can set Agent NGT configuration
auto_index_duration_limit
andauto_index_check_duration
for auto indexing. In this example, you can create index manually usingCreateAndSaveIndex()
method in the client libraryexample code
_, err = client.CreateAndSaveIndex(ctx, &payload.Control_CreateIndexRequest{ PoolSize: uint32(insertCount), }) if err != nil { glg.Fatal(err) }
Search
Search 10 neighbor vectors for each 20 test datasets and return a list of neighbor vectors.
When getting approximate vectors, the Vald client sends search config and vector to the server via gRPC.
example code
glg.Infof("Start search %d times", testCount) for i, vec := range test[:testCount] { res, err := client.Search(ctx, &payload.Search_Request){ Vector: vec, Config: &payload.Search_Config{ Num: 10, Radius: -1, Epsilon: 0.1, Timeout: 100000000, } } if err != nil { glg.Fatal(err) } b, _ := json.MarshalIndent(res.GetResults(), "", " ") glg.Infof("%d - Results : %s\n\n", i+1, string(b)) time.Sleep(1 * time.Second) }
Remove
Remove indexed 400 training datasets from the Vald agent.
example code
for i := range ids [:insertCount] { _, err := client.Remove(ctx, &payload.Remove_Request{ Id: &payload.Object_ID{ Id: ids[i], }, }) if err != nil { glg.Fatal(err) } if i%10 == 0 { glg.Infof("Removed %d", i) } }
Remove from the index manually instead of waiting for auto indexing.
The removed vectors still exist in the NGT graph index before the SaveIndex (or CreateAndSaveIndex) API is called. If you run the below code, the indexes will be removed completely from the Vald Agent NGT graph and the Backup file.
example code
_, err = client.SaveIndex(ctx, &payload.Empty{}) if err != nil { glg.Fatal(err) }
It would be best to run CreateIndex() after Insert() without waiting for auto-indexing in your client code, even you can wait for the finishing auto createIndex function, which sometimes takes a long time. The backup files (e.g., ngt-meta.kvsdb) will be in your mount directory when vald-agent-ngt finishes indexing.If you use Go(v1.16~) and catch the error like `missing go.sum entry to add it` when running `go run main.go`, please run `go mod tidy` and retry. This error comes from Go Command Changes of Go 1.16 Release Notes.(Please refer to https://golang.org/doc/go1.16#go-command for more details).
Cleanup
In the last, you can remove all deployed Vald pods by executing the below command.
helm uninstall vald-agent-ngt
Recommended Documents
Congratulation! You achieved this tutorial!
For more information, we recommend you to check:
See also
Get Started
Running Vald cluster with NGT Agent on Kubernetes and execute client codes
Get Started With Faiss Agent
Running Vald cluster with faiss Agent on Kubernetes and execute client codes
Vald Agent Standalone on Docker
Running Vald Agent on Docker and execute client codes
Vald Multicluster on K8s
Running Multi Vald Clusters with Mirror Gateway on Kubernetes and execute client codes